

Promoting Reductive Tandem Reactions of Nitrostyrenes with Mo(CO)₆ and a Palladium Catalyst To Produce 3*H*-Indoles

Navendu Jana, Fei Zhou, and Tom G. Driver*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

Supporting Information

ABSTRACT: The combination of $Mo(CO)_6$ and 10 mol % of palladium acetate catalyzes the transformation of 2-nitroarenes to 3*H*-indoles through a tandem cyclization-[1,2] shift reaction of in situ generated nitrosoarenes. $Mo(CO)_6$ appears to have dual roles in this transformation: generate CO and promote C-N bond formation to increase the yield of the N-heterocycle product.

he potential of triggering carbon—nitrogen bond formation using a nitro-group as the source of the nitrogen atom inspires significant research because of the widespread availability of nitroarenes.1 These research efforts have eased the transformation of nitroarenes into indoles and carbazoles by forming sp²-C-N bonds from sp²-C-H bonds.² This C-H bond amination is traditionally achieved using superstoichiometric quantities of a reductant such as phosphite, zinc dust, Grignard reagent, or high pressures of carbon monoxide, which convert the nitro-group into an electrophilic nitrogen species. In contrast, creating partially saturated, nonplanar N-heterocycles from nitroarenes has been slow to emerge,⁷ and these processes are traditionally typified by low yields and significant byproduct formation.8 Our group has developed transition-metal-catalyzed methods to convert aryl azides into complex, functionalized Nheterocycles through an electrocylization-migration tandem reaction of rhodium N-aryl nitrene 2 (Scheme 1).9 During the

Scheme 1. Rh₂(II)-Promoted Tandem Reactions

course of our studies, we were curious if spirocyclic heterocycles—inaccessible from aryl azides using our methods—could be formed from nitroarenes. Herein, we report that the reactivity embedded in trisubstituted nitrostyrenes can be unlocked using $Mo(CO)_6$ and a palladium catalyst to enable access to functionalized 3H-indoles.

Table 1. Development of Optimal Conditions

entry	catalyst	ligand	reductant	solv	yield, % ^a 9:10:11
1^b	$Pd(OAc)_2$	phen	CO (1.5 atm)	DMF	20:40:0
2^b	$Pd(OAc)_2$	tmphen	CO (1.5 atm)	DMF	12:21:0
3^b	$Pd(TFA)_2$	phen	CO (1.5 atm)	DMF	44:8:0
$4^{b,c}$	$Pd(TFA)_2$	phen	CO (1.5 atm)	DMF	62:0:0
$5^{b,c}$	$Pd(TFA)_2$	phen	CO (3 atm)	DMF	37:0:0
6^d	$Pd(OAc)_2$	phen	$Mo(CO)_6$	DMF	30:0:35
7^d	$Pd(OAc)_2$	phen	$Mo(CO)_6$	THF	48:0:50
8^d	$Pd(OAc)_2$	phen	$Mo(CO)_6$	DCE	80:0:0
9^e	$Pd(OAc)_2$	phen	$Mo(CO)_6$	THF	16:15:38
10^f	$Pd(OAc)_2$	phen	$Mo(CO)_6$	DCE	68:0:0

"As determined using ¹H NMR spectroscopy using CH₂Br₂ as the internal standard. ^b20 mol % of Pd(OAc)₂ and 40 mol % ligand used. ^c0.4 equiv of trifluoroacetic acid added. ^d1.0 equiv of Mo(CO)₆ used. ^e0.5 equiv of Mo(CO)₆ used. ^f5 mol % of Pd(OAc)₂ and 10 mol % phen used.

To determine if a cyclization-migration cascade could be triggered, nitroarene 8a was examined toward transition-metal catalysts and reductants (Table 1). The substrate for our study was easily constructed by cross-coupling the commercially available 2-nitrophenylboronic acid with the vinyl triflate derived from 2-phenylcyclohexanone. At the outset of our study, nitroarene 8a was exposed to a range of different transitionmetal complexes using 1.5 atm of carbon monoxide as the reductant. To our dismay, examination of common Rh-, ¹⁰ Ru-, ^{7a,10a} and Pt-catalysts ¹¹ for the reduction of nitroarenes produced only aniline 11a. In contrast, in situ generated phenanthroline palladium(II) complexes triggered the desired cyclization (entry 1).6 Unfortunately, the migration step was short-circuited by deprotonation to result in both spirocycle 9a and indoline 10a. Changing the identity of the phenanthroline ligand did not improve the ratio of spirocycle 9a to 10a (entry 2). 10b,12b Deprotonation could be inhibited by using Pd(TFA)₂ as the precatalyst (entry 3), and the addition of trifluoroacetic acid further improved both the yield and selectivity of the reaction (entry 4). Increasing the pressure of CO proved detrimental to this result (entry 5). In an attempt to improve the

Received: March 20, 2015 Published: May 13, 2015

Table 2. Examination of the Electronic Nature of the Nitroarene

"Conditions: 10 mol % Pd(OAc)₂ 20 mol % phenanthroline, Mo(CO)₆ (1 equiv), DCE, 120 °C, 16 h. ^bIsolated after silica gel chromatography. ^c20 mol % Pd(OAc)₂ used.

yield of our transformation, alternative sources of CO were screened. Metal carbonyl complexes are well established to release CO upon heating, 13 and Mo(CO)₆ is a proven CO equivalent in palladium-catalyzed carbonylation reactions. 14 To our delight, when CO source was changed to Mo(CO)₆, neither the deprotonation product **10a** nor oligomerization was observed (entries 6–8). Dichloroethane was found to be the optimal solvent enabling clean formation of spirocycle **9a** in 80% without any observed aniline byproduct (entry 8). Both aniline **11a** and **10a** byproducts were observed, however, when the amount of Mo(CO)₆ was reduced from 1 to 0.5 equiv (entry 9). In contrast, reducing the catalyst loading of Pd(OAc)₂ and phenanthroline proved less detrimental, while the yield of spirocycle **9a** was attenuated to 68%, no byproducts were formed (entry 10).

Using these optimal conditions, we examined the scope and limitations of palladium-catalyzed reductive cyclization-migration reaction (Table 2). This investigation was significantly eased by the modular nature of our substrate synthesis, which enables rapid construction of nitroarenes through a Suzuki crosscoupling reaction between 2-nitroarylboronic acid 12 and vinyl triflate 13a. First, the effect of changing the nitroarene substituent was examined. To our delight, we found that our reaction tolerated a range of electron-releasing or electronwithdrawing aryl R¹-substituents without significant attenuation the yield (entries 1-5). Next to demonstrate that our reaction enables access to 3H-indoles, which cannot be formed as single isomers using Fischer-indole-type reactions, 15 the identity of the R²-substituent was changed. Spirocycle 9 was formed smoothly irrespective of the electronic identity of the substituent (entries 6-9).

Next, the scope of the reaction was surveyed by varying the identity of the o-alkenyl substituent of the nitroarene (Table 3). First, higher yields were obtained with electron-rich R^{β} -aryl substituent (entries 1 and 2). In contrast to the expected alkyl shift, untethering the α - and β -alkyl substituents in 14c triggered a [1,2] phenyl shift to form 3H-indole 15c (entry 3). Next, the effect of changing the identity of the R^{β} -substituent was investigated (entries 4–12). While ring contraction was observed with an R^{β} -methyl to afford spirocycle 15d (entry 4), switching to a carboxylate group changed the identity of the product to 3H-

Table 3. Scope and Limitations of 3H-Indole Formation

^aIsolated after silica gel chromatography. ^b20 mol % Pd(OAc)₂ used.

indole **16** (entry 5). Carboxylate migration was not dependent on the ring size of the *ortho*-substituent: six-, seven- and even eight-membered cycloalkenyl substrates could be smoothly converted to 3*H*-indole **16** (entries 5–7). Next, changing the composition of the tether was examined (entries 8–9): 3*H*-indoles could be accessed from nitroarenes **14h** and **14i** bearing *ortho*-heterocycle substituents if a higher catalyst loading was used. The diastereo-selectivity of our reaction was next probed. The allylic methyl group in **14j** directed the stereoselectivity of the transformation to afford 3*H*-indole **16j** as a 91:9 mixture of diastereomers (entry 10). Moving the stereocenter to the homoallylic position in **14k** attenuated the diastereoselectivity slightly to 80:20 (entry 11). This ratio could be improved by increasing size of the migrating group to a *tert*-butyl carboxylate (entry 12).

Our initial mechanistic hypothesis for 3H-indole formation is based on the previous investigations into the catalytic cycle of palladium-mediated nitroarene reduction (Scheme 2). Reduction of (phen)Pd(OAc)₂ complex by Mo(CO)₆ would produce the palladium CO complex 17, which could exist either as a monomer or a cluster. National Reductive addition of nitroarene produces palladacycle 18. Reductive elimination of CO₂ produces palladium-nitrosoarene 19. Cyclization of 19 could occur through electrocyclization or attack by the adjacent π -system. The resulting benzylic cation in 20 triggers a ring contraction to produce spirocycle N-oxide 21. Reduction produces 3H-indole 9a and regenerates the palladium—carbonyl

Scheme 2. Possible Mechanism for 3H-Indole Formation

Scheme 3. Attempted Interception of Catalytic Intermediates

Test to trap potential Pd-nitrene intermediate

catalyst. Alternatively, $Mo(CO)_6$ could have multiple functions: in addition to serving as the CO-source for Pd-catalyzed N–O bond reduction, it could coordinate to nitrosoarene 23 to facilitate attack by the pendant olefin to afford $20^{.20}$ A third possible mechanism is that spirocycle formation occurs via a metal nitrene intermediate. These intermediates have been posited as potential catalytic intermediates in related processes: 7,8 a ruthenium nitrene was implicated by Cenini and coworkers in their intermolecular allylic C–H bond amination of cyclohexene with nitroarenes. 7a Palladium nitrosoarene complex could be reduced to produce palladacycle $24^{.21}$ Reductive elimination of CO_2 then produces palladium nitrene 25, which could undergo a 4π -electron-5-atom-electrocyclization-ring contraction to produce the 3H-indole product.

Several experiments were performed to distinguish between these possible mechanisms (Scheme 3).²² First, we submitted nitroarene **26** to reaction conditions to examine if palladium nitrene **25** was a catalytic intermediate. We expected that if this intermediate was formed that some 2-phenylindoline would be observed.²³ In contrast, only aniline was produced to suggest that metal nitrenes are not catalytic intermediates. Next, interception of the nitrosoarene intermediate was attempted through the addition of **2**,3-dimethylbutadiene to the reaction mixture.²⁴ To our surprise, the putative nitrosoarene could not be trapped from either nitroarene **8a** or **2**,5-di-*tert*-butylnitrobenzene using

Scheme 4. Separation of Cyclization and Migration Steps

 $Mo(CO)_6$. It could only be intercepted from 30 using CO as the reductant to produce oxazine 31.

To further investigate the effect of $Mo(CO)_6$, the reactivity of 2-tert-butylnitrosobenzene 32 was examined (Eq 1). As expected, exposure to 2,3-dimethylbutadiene resulted in formation of oxazine 33. The addition of $Mo(CO)_6$, however, completely inhibited cycloaddition—irrespective of the equivalents of butadiene or 1,5-cyclooctadiene present—leading to aniline. Together these experiments indicate that $Mo(CO)_6$ is not simply functioning as a source of CO, but that it coordinates the nitrosoarene to induce cyclization and migration. Because $Pd(OAc)_2$ is required for high yields, our data suggests that role of the palladium phenanthroline complex is to catalyze the N–O bond reduction in nitroarene 8a and spirocycle 21.

Further insight into the mechanism was serendipitously provided by α -pinene-derived nitroarene **14m** (Scheme 4). Exposure of this nitroarene to reaction conditions produced only indoline **35** as a single diastereomer. The expected 1,2-carboxylate migration was short-circuited by deprotonation of one of the bridgehead methyl groups in **34** inducing a fragmentation to produce **35**. We found that the migration of the methyl carboxylate did not require palladium: exposure of indoline **35** to $Mo(CO)_6$ formed 3H-indole **16m** as a single diastereomer. The chemoselectivity of this migration step appears to result from the transition state or intermediate containing the more stable iminium ion (e.g., **TS-36**).

In conclusion, we have shown that the combination of palladium acetate and $Mo(CO)_6$ can unlock the reactivity embedded in 2-alkenyl-substituted nitroarenes and trigger cyclization—migration reactions to produce spirocyclic 3*H*-indoles. Our future studies are aimed at further exploring the reactivity of palladium nitrosoarene complexes to produce complex, functionalized N-heterocycles from readily accessible 2-substituted nitroarenes.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures, spectroscopic and analytical data. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b02946.

AUTHOR INFORMATION

Corresponding Author

*tgd@uic.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the University of Illinois at Chicago, Office of the Vice-Chancellor for Research for their generous financial support. We thank Mr. Furong Sun (UIUC) for high resolution mass spectrometry data.

REFERENCES

- (1) For reviews, see: (a) Boyer, J. H. In Nitrenes; Lwowski, W., Ed. Wiley: New York, 1970, 163. (b) Sundberg, R. J. In Comprehensive Heterocyclic Chemistry; Katritzky, A., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: New York, 1996, p 119, Vol. 2. (b) Söderberg, B. C. G. Curr. Org. Chem. 2000, 4, 727. (c) Ohno, N. The Nitro Group in Organic Synthesis; Wiley-Interscience: Weinheim, 2003. (d) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195.
- (2) cf. (a) Penoni, A.; Volkmann, J.; Nicholas, K. M. Org. Lett. 2002, 4, 699. (b) Banwell, M. G.; Kelly, B. D.; Kokas, O. J.; Lupton, D. W. Org. Lett. 2003, 5, 2497. (c) Knölker, H.-J. Chem. Lett. 2009, 38, 8. (d) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.
- (3) cf. (a) Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. *J. Chem. Soc.* **1965**, 4831. (b) Sundberg, R. J.; Yamazaki, T. *J. Org. Chem.* **1967**, 32, 290. (c) Sundberg, R. J.; Kotchmar, G. S. *J. Org. Chem.* **1969**, 34, 2285. (d) Cadogan, J. I. G. Acc. Chem. Res. **1972**, 5, 303.
- (4) (a) Reissert, A. Ber. Dtsch. Chem. Ges. 1897, 30, 1030. (b) Clark, R. D.; Repke, D. B. Heterocycles 1984, 22, 195.
- (5) (a) Bartoli, G.; Palmieri, G.; Bosco, M.; Dalpozzo, R. Tetrahedron Lett. 1989, 30, 2129. (b) Bartoli, G.; Bosco, M.; Dalpozzo, R.; Palmieri, G.; Marcantoni, E. J. Chem. Soc., Perkin Trans. 1 1991, 2757. (c) Dalpozzo, R.; Bartoli, G. Curr. Org. Chem. 2005, 9, 163. (d) Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Ess, D. H.; Kürti, L. Angew. Chem., Int. Ed. 2014, 53, 2701.
- (6) (a) Akazome, M.; Kondo, T.; Watanabe, Y. J. Org. Chem. 1994, 59, 3375. (b) Söderberg, B. C.; Shriver, J. A. J. Org. Chem. 1997, 62, 5838. (c) Smitrovich, J. H.; Davies, I. W. Org. Lett. 2004, 6, 533. (d) Davies, I. W.; Smitrovich, J. H.; Sidler, R.; Qu, C.; Gresham, V.; Bazaral, C. Tetrahedron 2005, 61, 6425. (e) Hsieh, T. H. H.; Dong, V. M. Tetrahedron 2009, 65, 3062.
- (7) cf. (a) Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. J. Am. Chem. Soc. 1996, 118, 11964. (b) Merişor, E.; Conrad, J.; Klaiber, I.; Mika, S.; Beifuss, U. Angew. Chem., Int. Ed. 2007, 46, 3353.
- (8) cf. (a) Sundberg, R. J. J. Am. Chem. Soc. 1966, 88, 3781.
 (b) Smolinsky, G.; Feuer, B. I. J. Org. Chem. 1966, 31, 3882.
 (c) Sundberg, R. J. J. Org. Chem. 1967, 32, 290.
- (9) cf. (a) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem., Int. Ed. 2011, 50, 1702. (b) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011, 133, 4702. (c) Kong, C.; Jana, N.; Driver, T. G. Org. Lett. 2013, 15, 824. (d) Jones, C.; Nguyen, Q.; Driver, T. G. Angew. Chem., Int. Ed. 2014, 53, 785. (e) Kong, C.; Driver, T. G. Org. Lett. 2015, 17, 802. (f) Kong, C.; Su, N.; Zhou, F.; Jana, N.; Driver, T. G. Tetrahedron Lett. 2015, DOI: 10.1016/j.tetlet.2015.01.008.
- (10) (a) Cenini, S.; Pizzotti, M.; Crotti, C.; Ragaini, F.; Porta, F. *J. Mol. Catal.* **1988**, *49*, 59. (b) Cenini, S.; Ragaini, F.; Pizzotti, M.; Porta, F.; Mestroni, G.; Alessio, E. *J. Mol. Catal.* **1991**, *64*, 179.
- (11) Voorhees, V.; Adams, R. J. Am. Chem. Soc. 1922, 44, 1397.
- (12) cf. (a) Wehman, P.; Dol, G. C.; Moorman, E. R.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Fraanje, J.; Goubitz, K. Organometallics 1994, 13, 4856. (b) Wehman, P.; Kaasjager, V. E.; Hartl, F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Fraanje, J.; Goubitz, K. Organometallics 1995, 14, 3751. (c) Wehman, P.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Chem. Commun. 1996, 217. (d) Wehman, P.; Borst, L.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Mol. Catal. A 1996, 112, 23. (e) Ragaini, F.; Gasperini, M.; Cenini, S. Adv. Synth. Catal. 2004, 346, 63. (f) Gasperini, M.; Ragaini, F.; Remondini, C.; Caselli, A.; Cenini, S. J. Organomet. Chem. 2005, 690, 4517.

- (13) (a) Phillips, J.; Dumestic, J. A. Appl. Catal. 1984, 9, 1. (b) Armarego, W. L. F.; Perrin, D. D. Purifications of Laboratory Chemicals; Butterworth-Heinemann: Oxford, U.K., 1997; pp 378–404. (14) (a) Larhed, M.; Hallberg, A. J. Org. Chem. 1996, 61, 9582. (b) Kaiser, N.-F. K.; Hallberg, A.; Larhed, M. J. Comb. Chem. 2002, 4, 109. (c) Spencer, J.; Anjum, N.; Patel, H.; Rathnam, R. P.; Verma, J. Synlett 2007, 2557. (d) Spencer, J.; Rathnam, R. P.; Patel, H.; Anjum, N. Tetrahedron 2008, 64, 10195. (e) He, L.; Sharif, M.; Neumann, H.; Beller, M.; Wu, X.-F. Green Chem. 2014, 16, 3763.
- (15) cf. (a) Phillips, R. R. Org. React. 1959, 10, 1143. (b) Robinson, B. Chem. Rev. 1963, 63, 373. (c) Schammel, A. W.; Boal, B. W.; Zu, L.; Mesganaw, T.; Garg, N. K. Tetrahedron 2010, 66, 4687.
- (16) (a) Ragaini, F.; Larici, H.; Rimoldi, M.; Caselli, A.; Ferretti, F.; Macchi, P.; Casati, N. *Organometallics* **2011**, *30*, 2385. (b) Mooibroek, T. J.; Bouwman, E.; Drent, E. *Organometallics* **2012**, *31*, 4142.
- (17) (a) Trebbe, R.; Goddard, R.; Rufińska, A.; Seevogel, K.; Pörschke, K.-R. Organometallics 1999, 18, 2466. (b) Moiseev, I. I.; Stromnova, T. A.; Vargaftig, M. N.; Mazo, G. J.; Kuz'Mina, L. G.; Struchkov, Y. T. J. Chem. Soc., Chem. Commun. 1978, 27. (c) Vargaftik, M. N.; Stromnova, T. A.; Khodashova, T. S.; Porai-Koshits, M. A.; Moiseev, I. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1980, 1690. (d) Stolyarov, I. P.; Evdokimova, E. V.; Moiseev, I. I. Koord. Khim. 1989, 15, 1545.
- (18) (a) Leconte, P.; Metz, F.; Mortreux, A.; Osborn, J. A.; Paul, F.; Petit, F.; Pillot, A. *J. Chem. Soc., Chem. Commun.* **1990**, 1616. (b) Paul, F.; Fischer, J.; Ochsenbein, P.; Osborn, J. A. *Organometallics* **1998**, 17, 2199. (19) (a) Davies, I. W.; Guner, V. A.; Houk, K. N. *Org. Lett.* **2004**, *6*, 743. (b) Leach, A. G.; Houk, K. N.; Davies, I. W. *Synthesis* **2005**, 3463.
- (20) For molybdenum N-nitrosoarene complexes, see: (a) Hudson, A.; Lappert, M. F.; Nicholson, B. K. J. Chem. Soc., Dalton Trans. 1977, 551. (b) Liebeskind, L. S.; Sharpless, K. B.; Wilson, R. D.; Ibers, J. A. J. Am. Chem. Soc. 1978, 100, 7061. (c) Semkina, V. N.; Dolgova, S. P.; Zagorevskii, D. V.; Sizoi, V. F.; Kursanov, D. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 551. (d) Srivastava, R. S.; Nicholas, K. M. J. Org. Chem. 1994, 59, 5365.
- (21) Paul, F.; Osborn, J. A.; Fischer, J.; Ochsenbein, P. Angew. Chem., Int. Ed. Engl. 1993, 32, 1638.
- (22) The potential formation of radical intermediates was examined through the addition of superstoichiometric amounts of TEMPO or BHT. The yield of 3*H*-indole 9a was unaffected to suggest that radicals are not formed or do not escape the solvent sheath.
- (23) We have shown that metal *N*-aryl nitrenes with 2-homobenzyl substituents undergo sp³-C-H bond amination to afford indoline **28**; see: (a) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. *Org. Lett.* **2009**, *11*, 3598. (b) Nguyen, Q.; Sun, K.; Driver, T. G. *J. Am. Chem. Soc.* **2012**, *134*, 7262.
- (24) Attempts to synthesize 2-alkenyl-substituted nitrosoarenes by the oxidation of the analogous aniline were not successful.
- (25) In the absence of $Pd(OAc)_2$ and phenanthroline, spirocycle **9a** is only produced in 20%.
- (26) Our data does not exclude a catalytic cycle involving a heterobimetallic Pd-Mo(CO)_n complex. For examples of these complexes, see: (a) He, Z.; Lugan, N.; Neibecker, D.; Mathieu, R.; Bonnet, J.-J. *J. Organomet. Chem.* **1992**, 426, 247. (b) Braunstein, P.; de Méric de Bellefon, C.; Oswald, B.; Ries, M.; Lanfranchi, M.; Tiripicchio, A. *Inorg. Chem.* **1993**, 32, 1638. (b) Ritleng, V.; Chetcuti, M. J. *Chem. Rev.* **2007**, 107, 797.
- (27) The torqueselectivity of this electrocyclization can be rationalized by minimizing the steric interactions between the metal complex and the bridgehead methyl groups since the 1,3-syn substituted 35 was formed. For a discussion of torqueselectivity in electrocyclization reactions, see: (a) Kirmse, W.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1984, 106, 7989. (b) Jefford, C. W.; Bernardinelli, G.; Wang, Y.; Spellmeyer, D. C.; Buda, A.; Houk, K. N. J. Am. Chem. Soc. 1992, 114, 1157. (c) Harrington, P. E.; Tius, M. A. Org. Lett. 1999, 1, 649.
- (28) The combination $Pd(OAc)_2$, phenanthroline and $Mo(CO)_6$ also promoted the formation of spirocycle **9a** from **10a**. No 1,2 migration was observed when $Mo(CO)_6$ was omitted from the reaction mixture.